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Abstract
In a series of papers Calogero and Graffi (2003 Phys. Lett. A 313 356–62) and
Calogero (Phys. Lett. A (submitted); J. Nonlinear Math. Phys. (to appear))
treated the quantization of several one-degree-of-freedom Hamiltonians
containing a parameter, c, which plays no role in the classical motion, but
is critical to the value of the eigenvalue of the ground state. In this paper
we examine the classical and quantum problems from the point of view
of their Noether and Lie point symmetries respectively and demonstrate the
construction of the quantal wavefunctions from the Lie point symmetries of
the Schrödinger equation.

PACS numbers: 02.20.Sv, 02.30.Hq, 03.65.Fd

1. Introduction

In a series of papers Calogero and Graffi [2] and Calogero [3, 4] discussed the quantization
of a selection of one-degree-of-freedom Hamiltonians containing a parameter c which plays
no role in the classical motion. However, it does play an important role in the quantized
problem. Moreover it was observed that the spectra obtained for different systems which are
related by a nonlinear canonical transformation differed. Of some interest was the fact that the
classical problems were all isochronous with period 2π . We term such systems c-isochronous
nonlinear oscillators. Of the systems considered by Calogero the two which are related by a
nonlinear canonical transformation are of particular interest. They are [2]

H1(p, q) = 1

2

[
p2q3

c
+ c

(
q +

1

q

)]
(1.1)

and [4]

H(s)(p, q) = 1

2

[
p2q

c
+ c

(
q +

s

q

)]
, (1.2)
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where2 s = ±1. Calogero takes the parameter c to be an arbitrary real positive constant.
This is reasonable if one wants to maintain the physical interpretation of Ĥ as a Hermitian
operator. However, from a mathematical point of view one is not obliged to do so immediately
and for the nonce we make no statement about the value of the parameter c, but wait until the
mathematics requires us to impose some constraint on its value.

Hamilton’s equations of motion for (1.2) are

q̇ = qp

c
ṗ = 1

2c

[
p2 + c2

(
s

q2
− 1

)]
(1.3)

from which we deduce the Newtonian equation

q̈ = 1

2q
(q̇2 − q2 + s) (1.4)

in which it is evident that the parameter c is absent. If we proceed via the Lagrangian, we have

L = pq̇ − H

= 1

2
c

[
q̇2

q
−

(
q +

s

q

)]
(1.5)

in which we have used p = cq̇/q from (1.3a). The parameter c is a multiplier of the Lagrangian
and so is classically irrelevant.

One observes that the foregoing discussion raises a question about the process of
quantization. In addition to the standard problem of normal ordering of classical variables when
they become quantal operators there appears to be some ambiguity in the whole procedure of
quantization due to the possibility of the intrusion of a parameter, the constant c above, which
has no relevance to the classical motion and yet impacts significantly on the quantal problem.

In this paper we wish to examine more closely the solution of the Schrödinger equation
for the two operators (1.1) and (1.2). In particular we determine the values of the parameter
c which are permissible. Our approach is based on symmetry and consequently follows the
lines developed in Lemmer et al [9] in their treatment of the Schrödinger equations for the
simple harmonic oscillator and the Ermakov–Pinney problem in one dimension. We see that
the latter problem is closely related to the two Hamiltonians, (1.1) of Calogero and Graffi and
(1.2) of Calogero.

Calogero [4] concludes with the observation that the results reported in his three papers
are probably pedagogically useful and that perhaps they should be included in teaching a first
course in quantum mechanics. We agree with that observation and would hope that some of
the methods and results reported in this paper would be part of the material to be presented.

2. The classical symmetries

The Lie point symmetries of (1.4) are easily obtained with one of the symbolic manipulation
codes available for the computation of symmetries of differential equations. We use LIE
[8, 12] and obtain the three Lie point symmetries

�1 = ∂t

�2 = cos t∂t − q sin t∂q (2.1)

�3 = sin t∂t + q cos t∂q

with the Lie brackets

[�1, �2]LB = −�3, [�2, �3]LB = �1, [�3, �1]LB = −�2 (2.2)

2 Here we depart somewhat from the notation of Calogero [4]. In that paper Calogero writes, repeatedly, s = ±.
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so that the symmetries are a representation of the Lie algebra so(2, 1), the noncompact form
of rotations in three dimensions. We find it more convenient to rewrite the symmetries as

�1 = i∂t

�2± = �2 ± i�3 (2.3)

= e±it [∂t ± iq∂q]

for which the Lie brackets are now

[�1, �2±]LB = ∓�2±, [�2+, �2−]LB = 2�1 (2.4)

and we have a representation of sl(2, R).
The Noether symmetries of the action integral associated with the Lagrangian (1.5) can be

verified [1] by testing the Lie symmetries in the equation for the boundary term in Noether’s
theorem. In the process we determine the boundary term and also the associated integral. For
the particular Lagrangian, (1.5), the general formulae [10] become

ḟ = c

{
−τ̇

1

2

[
q̇2

q
+

(
q +

s

q

)]
− η

1

2

[
q̇2

q2
+

(
1 − s

q2

)]
+ η̇

q̇

q

}
(2.5)

I = f +
1

2
cτ

[
q̇2

q
+

(
q +

s

q

)]
− cη

q̇

q
. (2.6)

Specifically we find that

�1 : f1 = 0 I1 = 1

2
c

[
q̇2

q
+

(
q +

s

q

)]
(2.7)

�2± : f2± = −cq e±it I2± = 1

2
c e±it

[
q̇2

q
∓ 2iq −

(
q − s

q

)]
. (2.8)

All three Lie point symmetries of the Newtonian equation of motion (1.4) are Noether
point symmetries of the action integral. The algebra of the Noether point symmetries
is sl(2, R) which is the same as one finds for the Ermakov–Pinney problem and so one
expects that the construction of the solutions of the Schrödinger equation corresponding to the
Hamiltonian (1.2) leads to similar results as for that problem.

3. Symmetries and wavefunctions for H (s)

The time-dependent Schrödinger equation corresponding to the Hamiltonian (1.2) is, when
one uses the ordering prescription of Calogero [4] so that there is consistency between his
treatment and the present discussion,

2ic
∂u

∂t
+ x

∂2u

∂x2
+

∂u

∂x
− c2

(
x +

s

x

)
u = 0 (3.1)

for which we have written q̂ ⇒ x and p̂ ⇒ −i∂x . Equation (3.1) is the time-dependent
Schrödinger equation from which the time-independent form of Calogero [4] (17) is obtained
by the standard method of separation of variables. With the aid of LIE and some rearrangement
of the results we obtain the Lie point symmetries of (3.1) to be

�1 = i∂t

�2± = e±it
[
∂t ± ix∂x − (

icx ± 1
2 i

)
u∂u

]
�3 = u∂u

�f = f (t, x)∂u,

(3.2)
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where f (t, x) is any solution of (3.1). The finite algebra is A1⊕s sl(2, R) with the homogeneity
symmetry �3 providing the one-dimensional Abelian subalgebra and the sl(2, R) of �1 and
�2± corresponding to the algebra of the classical Noether symmetries as one finds in the case of
the simple harmonic oscillator and the Ermakov–Pinney problem [9]. The Lie bracket of any
of the finite symmetries with �f produces another representative of the class of symmetries
denoted by �f .

To determine the wavefunctions of the time-dependent Schrödinger equation (3.1) one
looks for similarity solutions corresponding to the symmetries. For this purpose �1 is of no
use even though it is the symmetry which enables the standard separation of variables which
leads to the time-independent Schrödinger equation. The homogeneity symmetry, �4, and the
solution symmetry, �f , are of even less use. Fortunately the symmetries, �2±, are useful. We
calculate the invariants from the associated Lagrange system

dt

1
= dx

±ix
= du

−(
icx ± 1

2 i
)
u

. (3.3)

From the first and second of (3.3) we obtain the invariant

v = x e∓it (3.4)

and from the second and third of (3.3) with the aid of (3.4) the invariant

w = u exp
[±(

cx + 1
2 it

)]
. (3.5)

We use �2+ to generate the solution of (3.1) so that the structure of the similarity solution
being sought is

u = exp
[−(

cx + 1
2 it

)]
f (x e−it ). (3.6)

When (3.6) is substituted into (3.1) and a few simplifications are made, we obtain for f the
second-order ordinary differential equation of the Euler type

v2f ′′ + vf ′ − c2sf = 0. (3.7)

(The prime denotes differentiation with respect to v.) The characteristic equation reduces to
λ2 = c2s and for s = 1 the solution of (3.7) is

f = Avc + Bv−c. (3.8)

It is evident that c must be real to avoid unseemly behaviour in f . For suppose that c = a + ib.
Then the part of vc given by the imaginary part is exp[bt] (cos b log x + i sin b log x). The
temporal part becomes infinite as time increases to infinity and the spatial part undergoes
oscillations of increasing frequency as x −→ 0. Furthermore c must be positive to give the
required convergence of u(t, x) to zero as x −→ +∞. Since c > 0, we must set B equal to
zero unless 0 < c < 1

2 to avoid a problem at the origin.
For c < 0 we take the negative sign in (3.5) and use �2− to generate the solution of (3.1).

The result is the same as given above with (3.8) and the subsequent comment except that the
roles of A and B are interchanged. This is in agreement with the statement of Calogero [4] that
one may take c > 0 without loss of generality. On the other hand, if s = −1, the characteristic
equation for (3.7) is λ2 = −c2 and the solution is

f = Avic + Bv−ic. (3.9)

This is not an acceptable solution unless c is imaginary. However, the convergence of the
wavefunction at infinity is now lost. Consequently one must conclude that the quantal problem
for the Hamiltonian (1.2) is not well-posed for s = −1. This is a somewhat stronger statement
than the conclusion reached by Calogero [4] in his concluding comments, but the outcome is
essentially the same.
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Henceforth we treat the case c > 0 only. The ground-state wavefunction is

u0 = exp
[−(

cx + 1
2 it

)]
xc e−cit (3.10)

for general values of the parameter, c. In the case that 0 < c < 1
2 there is the additional

solution, as was already noted by Calogero [4],

u0 = exp
[−(

cx + 1
2 it

)]
x−c e−cit . (3.11)

(The treatment for (3.11) parallels that of (3.10) and is not detailed.) To generate further
wavefunctions we construct the solution surface [9]

�0 = u−1(xc e−cit ) exp
[−(

cx + 1
2 it

)]
(3.12)

and operate upon it with �2−. We find that

�2−�0 = 2ic

(
x − 1 − 1

2c

)
e−it�0 (3.13)

so that the first excited state has the wavefunction

u1 =
(

x − 1 − 1

2c

)
xc exp

[−cx e−i( 3
2 +c)t

]
. (3.14)

Higher states are obtained by repeated application of �2− to the solution surface (3.12).
The energy is obtained by the action of �1 on the wavefunction, i.e. as

�1un = Enun

⇔ i
∂un

∂t
= Enun

⇒ En = n + 1
2 + c.

(3.15)

In the case that 0 < c < 1
2 the first excited state of the additional solution is

u1 =
(

x + 1 − 1

2c

)
x−c exp

[−cx e−i( 3
2 −c)t

]
(3.16)

and in general

En = n + 1
2 − c. (3.17)

The concentration of the wavefunction about the origin is evident in the closeness of the
zero of (3.16) at x = −1 + 1/(2c) to the origin. For this restricted range of values of the
parameter, c, there would appear to exist two sequences of states with intertwined energy
eigenvalues. However, the question of the self-adjoint nature of the Hamiltonian for this
interval of parameter values is critical. As it has already been addressed in considerable detail
by Calogero and Graffi [2] and the thrust of the present work is on the group theoretic aspects
of these problems, we do not repeat their discussion. The essential point is that Calogero and
Graffi report that it is necessary for E0 > 1

2 and so the second possibility summarized in (3.17)
is not possible.

4. Symmetries and wavefunctions for H1

The time-dependent Schrödinger equation corresponding to H1 is

2ic
∂u

∂t
+ x3 ∂2u

∂x2
+ 3x2 ∂u

∂x
+

[
(1 + ρ − c2)x − c2

x

]
u = 0, (4.1)
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which corresponds to the time-independent form given by Calogero and Graffi
[2, equation (17b)] and obviously we use the same ordering prescription as they used. The
Lie point symmetries of (4.1) are

� = i∂t

�2± = e±it

[
±i∂t + x∂x −

(
1

2
± c

x

)
u∂u

]

�3 = u∂u

�f = f (t, x)∂u,

(4.2)

where the finite algebra of the first four symmetries is again A1⊕ssl(2, R). The other comments
following (3.2) apply. We note that the symmetries are independent of the parameter ρ which
was introduced by Calogero and Graffi [2] to cover various possible quantization schemes for
H1. The Weyl quantization scheme corresponds to ρ = 1

2 .
The invariants of �2± are found from the associated Lagrange system

dt

±i
= dx

x
= − du(

1
2 ± c

x

) (4.3)

to be

v = x e±it and w = u exp

[
∓1

2
it ± c

x

]
. (4.4)

We substitute

u = f (x e±it ) exp

[
±1

2
it ∓ c

x

]
(4.5)

into (4.1) to obtain the equation

v2f ′′ + 3vf ′ + (1 + ρ − c2)f = 0 (4.6)

for f (v).
The two solutions of (4.6) lead to two solutions of (4.5), videlicet

u+ = x−1+β exp

[(
∓1

2
+ β

)
it ∓ c

x

]
(4.7)

u− = x−1−β exp

[(
∓1

2
− β

)
it ∓ c

x

]
, (4.8)

where β =
√

c2 − ρ is necessarily real. For c real and positive proper behaviour at the origin
requires that the upper sign be taken in both (4.7) and (4.8), i.e. the physically acceptable
solution comes from �2+. For proper behaviour at infinity the solution (4.8) is square integrable
for all β. In the case of (4.7) this is the case if 2(−1 + β) < −1, i.e. c2 − ρ < 1

4 .
As above the energy is obtained from the eigenvalue equation

�1u = Eu (4.9)

and we have

u0− = x−1−β exp

[(
−1

2
− β

)
it − c

x

]
, E0− = 1

2
+ β (4.10)

for general β and in addition

u0+ = x−1+β exp

[(
−1

2
+ β

)
it − c

x

]
, E0+ = 1

2
+ β (4.11)

in the case that β < 1
2 , i.e. c2 < 1

4 + ρ.
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Higher order solutions are obtained by the repeated action of �2− on the solution surfaces
corresponding to u0− and to u0+ in the acceptable parameter range. We note that this feature
of two intertwined sets of wavefunctions is not unknown since it was already observed for the
Ermakov–Pinney system [9] and was reported for H1 by Calogero and Graffi [2]. As we have
already noted at the end of section 3, following their work the solution with the negative sign
must be discarded since the Hamiltonian ceases to be self-adjoint.

5. Connection with the Ermakov–Pinney problem

The Newtonian equation for H(s) is

q̈ = 1

2q
(q̇2 − q2 + s). (5.1)

We manipulate (5.1) as follows:

2qq̈ − q̇2 + q2 = s

q− 1
2 q̈ − 1

2
q− 3

2 q̇2 +
1

2
q

1
2 = s

2q
3
2

(
q

1
2
)̈

+
1

4
q

1
2 = s

4
(
q

1
2
)

3

ẍ +
1

4
x = s/4

x3
,

(5.2)

in which we have made the substitution x = q
1
2 .

Hence equation (5.1) is simply a transformed version of the Ermakov–Pinney equation [7,
11] with the specific parameter values ω2 = 1

4 and µ = s/4. It is well known [5] that for
the quantal problem the inequality µ > − 1

4 must be satisfied to prevent ‘collapse into the
origin’ and this has been reflected in the results of the previous section when dealing with
the quantal problem associated with H(s). The connection between the parameters for the
Ermakov–Pinney problem and Calogero’s H(s) reveals a facet of that problem which was not
obvious in the analyses of Calogero [4] or in section 3. The Schrödinger equation for the
Ermakov–Pinney problem with ω = 1 is [9]

2i
∂u

∂t
+

∂2u

∂x2
−

(
x2 +

µ

x2

)
u = 0 (5.3)

and the creation and annihilation symmetries are

Y2± = e±2it
[
∂t ± ix∂x ∓ iu

(
1
2 ± x2

)
∂u

]
. (5.4)

We obtain the ground-state wavefunction using Y2+ in the same fashion as in section 3. It is

u0 = x
1
2 (1±α) e− 1

2 x2
exp

[−it
(
1 ± 1

2α
)]

, (5.5)

where α = √
1 + 4µ. Obviously for µ > 0 only the positive sign in (5.5) can be used.

However, for − 1
4 < µ < 0 both solutions are feasible. We generate the wavefunctions for

the higher states using the symmetry Y2− and it is a simple matter to show that the energy
eigenvalues are given by En = 2n + 1 ± 1

2α. Once again the solutions with the negative values
of α must be discarded for the equation to remain self-adjoint.
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We note that for the Ermakov–Pinney equation the energy eigenvalues increase by even
integers. In the case of H(+1) and H1 the energy eigenvalues increase by integral values. To
complete the connection between H1 (1.1), H(+1) (1.2) and the Ermakov–Pinney problem we
write the last in c-isochronous form. The Hamiltonian is

Hc
EP = 1

2

[
p2

c
+ c

(
ω2q2 +

µ

q2

)]
. (5.6)

Under the canonical transformation Q = aq2, P = p/(2aq) the Hamiltonian of the Ermakov–
Pinney problem becomes

Hc
EP = 1

2

[
4a

P 2Q

c
+ c

(
ω2

a
Q +

aµ

Q

)]
(5.7)

and this is identical to H(+1) when we set a = 1
4 , ω2 = 1

4 and µ = 4. (For H(s) we have
µ = 4s. However, as we have already seen that the value s = −1 is not admissible in the
quantal mechanical problem, there is no point in maintaining the fiction that it should be
considered.) (The canonical transformations between the three Hamiltonians are to be found
in Calogero and Graffi [2] (6) and Calogero [4] (26).)

The Schrödinger equation for the c-isochronous form of the Ermakov–Pinney problem is

2ic
∂u

∂t
+

∂2u

∂x2
− c2

(
x2

4
+

4

x2

)
u = 0 (5.8)

and the creation and annihilation symmetries are given by

�2± = e±it

[
∂t ± ix

2
∂x − i

4
(cx2 ± 1)u∂u

]
. (5.9)

In the same manner as we have done above we calculate

u0 = x
1
2 σ exp

[− 1
4 (cx2 + i(σ + 1)t)

]
(5.10)

E0 = 1
4 (σ + 1) (5.11)

En = n + 1
4 (σ + 1), (5.12)

where σ = 1 ±
√

1 + 16c2. We note that the corresponding results for the ground-state energy
eigenvalue for H1 and H(+1) are

E(1)0 = 1
2 +

√
c2 − ρ (general normal ordering)

E(1)0 = 1
2 +

√
c2 − 1

2 (Weyl)

and

E
(+1)
0 = |c| + 1

2

respectively. This additional variation, (5.11), of the value for the ground-state energy of
the quantal problem for Hamiltonians which classically have the same value adds a further
illustration that the acts of making a canonical transformation of a classical Hamiltonian and
the quantization of that Hamiltonian are not operations which commute [13].
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Equally disturbing is the dependence of the ground-state energy on the value of the
parameter c which plays no role in the Newtonian description of the motion although it does
affect the value of the classical energy if this is identified with the Hamiltonian.

6. Comments

The c-isochronous Hamiltonians, (1.1) and (1.2), may be obtained from the c-
isochronous Hamiltonian of the Ermakov–Pinney problem by means of successive canonical
transformations. Denoting the systems, Ermakov–Pinney, H(+1) and H1, by 1, 2 and 3 and
their canonical coordinates likewise we have the transformations

q2 = 1

4
q2

1 p2 = 2p1

q1
(6.1)

q3 = 1

q2
p3 = −p2q

2
2 . (6.2)

We note that both canonical transformations are point transformations and, as such, preserve
the number of Lie point symmetries of the Newtonian equations of motion. In all cases the Lie
algebra of the Noether point symmetries of the action integral is sl(2, R). We have observed
that the same applies to the Lie point symmetries of the respective Schrödinger equations.

It is evident that we could continue this process of devising nonlinear canonical
transformations to obtain a whole variety of c-isochronous Hamiltonian systems. However,
we believe that the point has been made sufficiently strongly by the examples treated here.
These examples were variations, classically obtained by means of canonical transformations
of the Hamiltonians, of the Ermakov–Pinney problem which is well known to be intimately
connected with the simple harmonic oscillator [6].

Despite the use of a consistent ordering scheme, indeed following that used by Calogero
and Graffi [2] and Calogero [3, 4], the ground-state eigenvalues of the Schrödinger equations
corresponding to the three different Hamiltonians treated are different. That they depend upon
the value of the parameter c, which is irrelevant in the Newtonian scheme of things, is bad
enough. That they depend upon the value of the parameter c in different ways seems to be
somewhat strange. The reason for this from the point of view of differential equations is that
the three time-dependent Schrödinger equations must in some way not be equivalent. Yet the
three equations are characterized by the possession of the same nontrivial algebra3, sl(2, R).
Schrödinger equations related by point transformations preserve the algebra and the properties
of the solutions. The solutions are simply expressed in terms of different variables. Evidently
the ordering scheme used by Calogero and Graffi [2] and Calogero [3, 4] does not destroy the
algebra, but it must introduce an inequivalent representation. If it did not, the differing results
would not occur.
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